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Abstract 

The research in this paper is intended to recommend an approach for adequate prediction of the 
properties of iron-based alloys for a preset composition and mode of heat treatment. Stages of 
creation (design), testing, production and deployment of high strength alloy steel, include the 
specification of the chemical composition, the parameters of the mode of thermal treatment and the 
final mechanical properties. The steel for its components and features for heat treatment is a 
technological object and therefore it is possible to apply for it an approach for modeling the properties 
and optimizing the composition depending on the particular application. The procedure of a reasoned 
elaboration of the chemical composition by the number and the amount of alloying elements is 
relatively new related to the pursuit of the final mechanical properties. The practical results are 

applicable and they can be used for:  the design of more efficient compositions in terms of the 

expensive alloying elements while maintaining the basic properties above a given threshold,    
evaluation of the technological cost of equally applicable technological variants of varying degrees of 

doping steel,   determination of a rational representative of a certain class of materials best suited to 
the requirements previously set (most often controlled properties) among the rest of the class. 

Keywords: ferrous alloys, modeling and optimization properties, neural models, genetic optimization 

algorithm  

1. INTRODUCTION  

Artificial Neural Networks (ANN) (Taylor, 1996), 

and Modeling Perception with Artificial Neural 

Networks (Tosh & Ruxton, 2010) are very 

effective as a computational tool for solving 

problems without any alternative. This is due to 

the advantage of neural networks over other 

computing systems that operates with ANN that 

they work parallel and significantly outrun 

successive calculations in rapidity. The neural 

network always operates as a system of 
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connected elementary units which are important 

for the functioning of the network. According to 

Borovikov (2008), one of the consequences of 

this kind of activity is the ability to work properly 

with the destruction of many of its elements 

(known as ‘graceful degradation’). The current 

trend of increasing use of the ANN leads to 

complex and intelligent tools for design. 

The great amount of metallic materials on iron 

base (~99% from the worldwide production) is 

construction materials. The conditions for their 

operation are related to the stress (R), occurring 

in certain sections. This is the reason all the 

engineering calculations to be based on the yield 

strength Re, a tension at which the permanent 

plastic elongation is 0.2%. For each class of 

steels with a definite purpose, the user knows the 

approximate value of the yield strength Re and 

he/she relates it to many other necessary 

technological performance properties. 

Calculations of steel constructions use the tensile 

strength (Rm), and this is the tension at which 

they lose their operative size and the 

configuration for the corresponding load. The 

ratio shows the resistance of the material to local 

overloads. All obligatory features (strength Re, 

Rm, HB and plastic A and Z) intuitively are 

considered during the selection of the material 

due to the controversial action of the various 

alloying elements on their values. It is difficult to 

combine high yield strength (Re) with high 

toughness to destruction.  

The basis for the research is a database of 91 

alloys (Zubchenko, Koloskov, Kashirskii, & et al, 

2003).  

The design of an alloy is based on modeling by 

neural networks, satisfactorily approximating the 

relations between the chemical composition of 

the alloy and the mechanical parameters under 

fixed heat treatment – hardening and high-

temperature annealing. 

For this purpose the following conditions were 

applied to modeling: 

 Type of neuronal models – the research is 

focused mainly on classic FF (feedforward) 

models such as multilayer perceptron (MLP). 

The study sample of experimental data 

includes observations of 91 alloys with 

different compositions and corresponding 

values of the parameters Re and A. 

 The research was performed with the 

specialized software StatSoft Statistica 10 

module Artificial Neural Networks (StatSoft, 

2013). 

 Implementation of the study and results - for 

each of the studied neural models starting 

experimental data are divided into three sets: 

training, test and validation in which the 

number of observations included is in the 

ratio respectively 70%: 15%: 15%. 

Observations included in these sets are 

chosen randomly. 

For modeling of the relation between the 

composition of the alloy and any of the 

parameters Rm, Re, A, Kcu and HB there have 

been examined 1000 separate neural models, 

differing in their configuration (number of internal 

neurons) and the activation functions of the 

neurons from the internal layer and the output 

layer. 

The following activation functions are used for the 

design of the MLP neural model: 

 Identity: 
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 Logistic (sigmoid) function: 
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 Exponent: 
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The evaluation of the quality of the tested neural 

models is based on the performance: 

 Correlation between observed and modeled 

values of the output network: 
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where N is the number of elements 

(observations) per set (instructional, test or 
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validation), yi is the calculated output of the 

network, and ti is the observed value of the 

approximated parameter, y  and t  are the 

statistical means for modeled and observed 

output values (for the corresponding set) 

 Function of the error – the sum of the 

squares between observed and modeled values 

of the output network: 


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wherein the denotations are as above. 

Based on the research for each of the 

parameters Rm, Re, A, Kcu and HB there were 

selected neural models having the best indicators 

of quality (R and ESOS). The data for both 

selected neural models of the MLP type are 

shown in Table 1. The table indicates the values 

of the correlation coefficient R and the error ESOS 

for the test set, also the type of activation function 

in the internal (hidden) and output layer of the 

neural model. 

Table1. Neural networks of type MLP, approximating parameter 

Parameter 

Type of 

the neural 

network 

Activation 

function, 

internal layer 

Activation function, 

output neuron 
R Test Esos Test 

Rm MLP 8-6-1 Logistic Tanh 0.781471 12931.86 

Re MLP 8-7-1 Tanh Logistic 0.856995   9708.579 

A MLP 8-16-1 Logistic Tanh 0.886477        1.514303 

Kcu MLP 8-14-1 Tanh Logistic 0.855329 10352.15             

HB MLP 8-4-1 Tanh Exponent 0.972724      83.18074 

Rm (Target) vs. Rm (Output)
 Samples: Test

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Rm (Target)

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

R
m

 (
O

u
tp

u
t)

 

Fig.1 Correlation between observed and modeled values of Rm 
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Fig.2 Correlation between observed and modeled values of Re 

 

Fig.3 Correlation between observed and modeled values for A 

A (Target) vs. A (Output)
 Samples: Test

4 6 8 10 12 14 16 18 20 22 24 26 28

A (Target)

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

A
 (

O
u
tp

u
t)

Re (Target) vs. Re (Output)
 Samples: Test

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Re (Target)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

R
e
 (

O
u
tp

u
t)



Tontchev & Ivanov. Optimization of composition of iron-bases alloys  
FBIM Transactions Vol.2 No.1 pp.1 - 12 

Published: January 2014  MESTE  5 

 

Fig.4. Correlation between observed and modeled values of Kcu 

 

Fig.5. Correlation between observed and modeled values of HB 
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Fig. 1 to Fig. 5 show two-dimensional diagrams 

comparing observed and modeled values of the 

parameters listed in the tables Rm, Re, A, Kcu 

and HB networks. 

Based on the evaluation of the quality of the 

prepared in this way neural models (Freeman J. 

A., David, Skapura M, 1991, ) it has been 

accepted that they have sufficiently good 

approximation properties and that they may be 

successfully used in experiments and in 

numerical assignments for modeling and 

optimization of the composition iron-carbon 

alloys. 

2. DESCRIPTION OF THE 
MULTICRITERIA AHP APPROACH 

The approach for multicriteria optimization of the 

composition for the ferritic alloy is based on three 

basic postulates: 

 using the deduced above neural models for 

approximation of the explored mechanical 

properties of the alloy, depending on its 

chemical composition; 

 presentation of the multicriteria assessment 

of the alloy quality by weight(ed) complex 

criterion using the AHP (Analytic Hierarchy 

Process) method. The criterion takes into 

account the mechanical parameters of the 

alloy, determined on the basis of neural 

models and involved in the final criterial 

assessment by the priority weights. 

 using a genetic algorithm to find an optimal 

chemical composition of the alloy on the 

basis of the accepted complex criterion. 

The optimization problem is formulated in the 

following form: 

 find the maximum of complex optimization 

criterion: 
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where:  

 X=(x1,…,xn) is the vector of values of the 

arguments for the problem;  

 K’j(X) are normalized dimensionless 

estimates of particular criteria in the form: 
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maxmin , jj KK  are the minimal and maximal 

values for the criterion Kj, j=1,...,m, defined 

by the possible values of X=(x1,…,xn) in the 

domain of task D, and Kj(X) is the value of 

the private trkushtata criteria for the decision 

X; wj are the normalized weights of the 

private criteria Kj(X), involved in the complex 

criterion K. 

The constraints on the arguments of the problem 

determining its domain are of the form: 
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The strength and plastic characteristics of the 

alloy have been chosen as a criterion. In models 

for approximation the elements participate with 

their percentage: x1,…, xn and the range of 

variation. 

The multicriteria approach is based on the 

method AHP (Haupt & Haupt, 2004). The 

approach is popular for solving similar problems 

and it is known in that it allows through expertise 

and simple algebraic calculations to determine 

the relative weights wi of the private criteria in the 

general complex criterion. The determination of 

the weights is made on the basis of the expert’s 

comparison of mutual dominance of private 

criteria in two by two so-called “Matrix of 

comparisons” – a reciprocal square-anti-

symmetric matrix of dimension mm. In the 

evaluation of the mutual dominance of criteria are 

used the values 1, 3, 5, 7 and 9, which 

correspond to an ordinance of increasing 

degrees of dominance (from “lack of dominance” 

between the compared criteria to “extreme 

dominance”). The procedure for calculating the 

weights wi is based on finding the eigenvector of 

the largest eigenvalue of the matrix A. The 

detailed and complete description of the AHP 

method is contained in (Haupt & Haupt, 2004), 

(Saaty & Vargas, 2012), (Bodenhofer, 2000), 

(Coley, 1999), present computational models 

based on evolutionary ideas borrowed from 

biological science. 
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Fig. 6 General scheme of the approach to multicriteria optimization of the composition of the alloy 

using a genetic algorithm 

Their main advantage is the applicability to a 

wide range of complex optimization problems, 

where often the relationship between the 

optimized parameters and optimization criteria is 

not clearly and formally defined. The solution is 

sought on a set of feasible solutions to the main 

problem – (“population” of “individuals”) 

determined mostly by a procedure of random 

generation. Each individual solution is described 

by the set of encoded values of the optimization 

parameters, known as “chromosomes”. The 

optimal solution is sought iteratively till the 

satisfaction of a given criterion for the termination 

of the process. The initial population of 

individuals is evolved due to “crossovers” of 

chromosomes and a random “mutation” in each 

iteration. A procedure for selection of the “better” 

individuals provides the practical convergence of 

the decision (albeit slowly) to the area of global 

minimum. In the particular problem the initial 

population of possible alloy compositions is 

generated as a set of points randomly distributed 

in the domain D (200 in total). The chemical 

composition of the material is contained in coded 

form in the “chromosomes” of randomly 

generated solutions. In the research there has 

been used the so-called “tournament” approach 

for the selection of crossover-promising 

“individuals.” The random mutation is performed 

after the crossover with a probability of 0.08. The 

used algorithm is implemented in C-language 

code selecting effective techniques from issued 

implementations of algorithms from this class. 

The ultimate value of the complex criterion K was 

prepared as a dimensionless quantity in the 

range of (0, 1). 
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3. DESCRIPTION OF THE 
NUMERICAL EXPERIMENT 

The numerical experiment was carried out with 

several examples, two of which (labeled A and B) 

are presented here. The examples include as 

initial data various matrices of comparisons for 

the private criteria necessary to calculate the 

weights wi, i=1,…,n in which they participate in 

the complex optimization criterion K. The values 

in the matrices are determined through an 

expertise according to the methodology for the 

application of the AHP-method. Table 2 and 

Table 3 present a comparison between the 

matrices of sample A and sample B. 

Table 2 Estimates of prevalence in the matrix of 

the criteria for comparisons, for example A 

 Rm Re A KCU HB 

Rm 1 1/5 1/3 3 5 

Re 5 1 3 7 9 

A 3 1/3 1 5 7 

KCU 1/3 1/7 1/5 1 1 

HB 1/5 1/9 1/7 1 1 

Table 3 Estimates of prevalence in the matrix of 

the criteria for comparisons, for example B 

 Rm Re A KCU HB 

Rm 1 1/3 1/5 5 7 

Re 3 1 1/3 7 9 

A 5 3 1 5 7 

KCU 1/5 1/7 1/5 1 3 

HB 1/7 1/9 1/7 1/3 1 

Table 4 Weights wi of the test criteria, after the 

application of the procedure of the AHP-method 

for example A and for example B 

Criterion Weights for 

example А 

Weights for 

example B 

Rm 0.130356 0.153374 

Re 0.515726 0.286948 

A 0.262767 0.47138 

KCU 0.0502754 0.0572825 

Hb 0.0408753 0.0310152 

The result of the processing based on the above 

matrix weights wi of the private criteria after 

applying the procedure of AHP-method for 

example A and for example B are shown in Table 

4. 

The values of the complex criterion K after 

optimization with the genetic algorithm, the 

optimal composition of the alloy X
*
=(x

*
1,…,x

*
n) for 

the so-selected weights wi, and the value of the 

private optimization criteria Kj, j=1,…,m are 

shown in Table 5. 

Table 5 Values of the complex criterion 

For example А For example B 

0.82826150333 0.76458389405 

The optimal composition from the considered 

procedure of the specified requirements about 

the mechanical properties is shown in Table 6. 

Table 6 Result of the applied optimization 

procedure 

Input-output 
parameters 

Composition 
and 

properties for 
example А 

Composition 
and 

properties for 
example B 

C [%] 0.479 0.473 

Si [%] 1.399 1.380 

Mn [%] 0.270 0.291 

Ni [%] 1.911 0.220 

S/P [%] 0.015 0.015 

Cr [%] 3.250 3.235 

Mo[%] 0.688 0.616 

V [%] 0.0003 0.009 

Rm [MPa] 1435.026 1431.566 

Re [MPa] 1348.571 1341.013 

A %] 20.213 20.100 

KCU [kJ/m
2
] 945.0369 942.8902 

HB [MPa] 271.06 271.06 

Table 7 shows the result from the influence of 

carbon on the optimization solution. The analysis 

of the composition and the results for the tested 

properties manifest a very stable behavior. 
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Table 7. Research of the influence of carbon content on the optimization solution 

Input-output 
parameters 

Solution #1 Solution #2 Solution #3 Solution #4 

C [%] 0.3 0.35 0.4 0.42 

Si  [%] 1.39 1.4 1.39 1.39 

Mn [%] 0.46 0.52 0.46 0.388 

Ni [%] 2.2 1.54 1.58 1.68 

S/P [%] 0.019 0.016 0.015 0.015 

Cr [%] 3.25 3.235 3.24 3.25 

Mo[%] 0.47 0.53 0.61 0.647 

V [%] 0.0003 0.0 0.0001 0.0009 

Rm [MPa] 1372.11 1387.0 1405.5 1407.0 

Re [MPa] 1292.57 1304.0 1316.0 1322.0 

A [%] 18.37 18.8 19.48 19.76 

KCU [kJ/m
2
] 932.33 945.13 956 961 

HB [MPa] 271 271 271 271 

The basis for further research is the chemical 

composition of solution # 2. The composition is 

fixed as it follows: C = 0.35%; Si = 1.4%; Mn =  

 

 

0.52%; S and P = 0.016%; Mo = 0.53%; V = 0%, 

and in Table 8 there are presented the results for 

the tested parameters for the variation of nickel 

and chromium. 

Table 8 Research of the influence of nickel and chromium on the optimization solution 

№ Ni Cr Rm Re А KCU HB 

1 1.542 3.25 1388.82 1304.29 18.80 946.09 271.05 

2 1.542 3 1368.24 1299.01 18.86 952.23 271.02 

3 1.542 2.5 1336.4 1281.36 18.63 947.67 270.73 

4 1.542 2 1337.48 1247.82 17.82 914.80 268.25 

5 1.542 1.5 1383.56 1186.91 16.39 824.65 252.14 

6 2.2 3.25 1443.71 1290.21 18.87 741.34 271.05 

7 2.2 3 1429.61 1280.80 18.89 762.88 271.04 

8 2.2 2.5 1405.66 1249.95 18.58 793.80 270.87 

9 2.2 2 1401.26 1193.02 17.67 778.19 269.45 

10 2.2 1.5 1430.45 1096.76 16.20 697.52 258.99 

11 1 3.25 1323.69 1312.06 18.73 973.25 271.04 

12 1 3 1296.9 1308.97 18.81 974.14 271.00 

13 1 2.5 1261.16 1298.18 18.65 970.81 270.53 

14 1 2 1274.23 1277.18 17.92 953.02 266.68 

15 1 1.5 1340.67 1237.84 16.56 888.81 244.91 
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Fig. 6 Variation in tensile strength with the 

variation of chromium and nickel in 

 the optimal composition set 

 
Fig. 7 Amendment of the yield point for variations 

of chromium and nickel in  

the optimally defined composition 

 
Fig.8 Modification of the variation in the 

elongation of chromium and nickel in  

the optimally defined composition 

Figures 6 to 8 present graphical interpretations of 

the results from Table 8 for variances with 

chromium and nickel. 

4. CONCLUSIONS  

The optimization approach is based on the 

selection of neural models for approximation of 

the physical and mechanical parameters Rm, Re, 

A, Kcu and HB. A significant number (more than 

1000) of various neural models with a different 

number of nodes in the hidden layer and different 

activation functions is the object of research. 

There have been selected only the neural 

patterns with the best quality of approximation; 

Use of an multicriteria approach taking into 

account the mutual dominance of the criteria and 

with an evaluation of the normalized weights with 

which they are engaged in the complex 

optimization criterion. The weights of the private 

criteria may be modified to suit the specific needs 

and preferences of the designer, according to the 

intended purpose of the iron-carbon alloy. 

Usage of a universal and flexible optimization 

algorithm based on the genetic approach. 

Practically the algorithm is independent of the 

approximative nature of the connections for the 

private criteria; it does not depend on the 

structure and type of the complex optimization 

criterion. The algorithm can be used in a very 

wide range of conditions and requirements 

related to the properties of the material. 

The approach and the formulated model can be 

widely used in research with practical choice of 

materials and their composition, as well as for 

training of experts in the respective engineering 

field. 
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