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Abstract 

The process of modeling quality indicators from mechanical and simulation tests aiming to establish the 

fulfillment of specific technical requirements is linked to resource efficiency. Imposing such a modern 

approach in the design process increases the efficiency of the used materials' expected capacity. The 

proposed design enhances material strength while reducing structural weight, leading to lower fuel 

consumption and a corresponding decrease in greenhouse gas emissions. Its successful 

implementation relies on continuous research to identify innovative solutions and advanced 

computational approaches that expand existing knowledge and best practices. This paper presents a 

comprehensive review of multiaxial and multicycle fatigue, a critical factor in the design of essential 

components exposed to complex loading conditions. The purpose is to review and examine the current 

state of this type of testing, modeling approaches, experimental techniques, and current real-world 

applications in the fields of aerospace and automotive design. The aim is to draw the attention of 

engineers, researchers, and industry professionals working with high-performance materials and 

structures that study complex stresses. 

Keywords: High-cyclic fatigue, Resource efficiency, Neural modeling, Machine learning, Fatigue 
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1 INTRODUCTION 

The aim of this paper is to focus on the design of 

components under complex loading conditions 

(multiple forces from different directions 

simultaneously), and multi-axial and high cyclic 

fatigue from the automotive and aviation sectors. 
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The defined task imposes several requirements 

on the design of components, as preventing 

safety-critical fatigue failures is critical for accident 

avoidance. 

Weight optimization is crucial in the design 

process, as it directly influences material selection 

in the automotive sector. Fuel costs and 

environmental concerns play a key role in 

determining the choice of materials in automotive 

design. This interdisciplinary challenge integrates 

mechanical engineering, materials science, and 

computer modeling to address three main 

aspects: fatigue failure prevention, simulation-

based optimization, and sustainable lightning. 

Reducing aircraft masses decreases energy 

consumption during flights. Every eliminated 

kilogram of mass results in 106 kg of jet fuel 

savings per year and reduces greenhouse gas 

emissions in aviation proportionally. This 

relationship is a driving innovation, such as the 

development of carbon fiber-reinforced polymers 

in plane wings, thereby achieving a 15-20% 

weight reduction compared to aluminum 

(Pryanshu, 2023). 

Modern components, such as aircraft landing 

gears and automotive axles, are subject to 

bending and torsional loads, requiring accurate 

models to predict fatigue life. Traditional 

approaches, such as Miner's rule and critical plane 

methods, remain fundamental; however, they 

have limitations in addressing variable amplitudes 

and complex stress conditions (Bin, Jianhui, & 

Xiuli, 2014). Recent advances include 

computational models that incorporate additional 

hardening effects and synergistic interactions 

between mechanical and control systems. For 

example, validated real-time simulation 

frameworks allow designers to test servomotor 

configurations under dynamic loads while 

maintaining numerical stability (Pineau, 

Gailletaud, & Lindley, 1996).  

Galvorn carbon nanotubes replace copper cables 

(2-3% of the aircraft mass), offering significant 

weight reduction and a negative carbon footprint 

from manufacturing (-2.3 kg CO₂ e/kg). Another 

impact of Galvorn carbon nanotubes is that 

aluminum production emits 16.7 kg CO₂ e/kg; in 

contrast, advanced composites and Galvorn 

reduce this to ≤5 kg CO₂ e/kg. Reducing material 

waste by 30-50% through additive manufacturing 

in components such as turbine blades also 

decreases emissions. Making everything lighter 

offsets higher SAF (sustainable aviation fuel) 

costs by reducing fuel consumption per flight 

(DexMat, 2023). 

The integration of mechatronic system modeling 

allows simultaneous optimization of structural, 

electrical, and control parameters. An example of 

waterjet cutting machines is demonstrated where 

a 69% weight reduction is achieved by optimizing 

the topology with improved manufacturing 

accuracy. This approach reduces development 

resources by 40-60% compared to sequential 

design methods while enabling multidisciplinary 

design exploration (Priarone, Catalano, & 

Settineri, 2023). 

On the other hand, the manufacturing processes 

and the new materials (composites, additive 

manufacturing) mentioned above require 

knowledge of the existing methodologies to 

determine how the fatigue models will be updated. 

The high testing costs make accurate modeling 

particularly valuable in reducing development time 

and expenses. These results align with a 

simulation and optimization framework, integrated 

into the entire product life cycle, ensuring 

balanced performance, safety, and environmental 

goals. Current research is focused on hybrid 

optimization algorithms and machine learning to 

address these challenges while maintaining real-

time simulation capabilities. 

2 MATERIAL FATIGUE: THEORIES, 
MODELS & APPROACHES BY 
LOAD & CYCLES 

2.1 Characteristics and Features of 
Low- and High-Cycle Fatigue 

Low-cycle fatigue (LCF) occurs under elevated 

stress conditions, often exceeding the material 

yield strength, resulting in significant plastic 

deformation during each cycle. This permanent 

deformation is a defining characteristic of this 

fatigue mechanism. As a result, LCF typically 

leads to failure within a relatively small number of 

cycles, usually fewer than 10⁴. That is due to the 

higher stress amplitudes and the resulting plastic 

strains. The LCF is analyzed using E-N (or ε-N), 

which includes both elastic and plastic strain 

components to predict fatigue behavior. The 

Coffin-Manson relationship is commonly used to 
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describe the behavior of materials under low-cycle 

fatigue (LCF) conditions, leading to 

microstructural changes such as crack 

propagation, mechanical work hardening, and 

strain concentration. 

High-cycle fatigue (HCF) operates at stress levels 

much lower than the yield strength, involving 

predominantly elastic deformation. Materials 

subjected to HCF do not experience permanent 

changes in shape before failure. HCF is key in 

achieving a greater number of cycles to failure, 

often exceeding 105 cycles. Lower stress levels 

require more cycles to initiate and propagate 

cracks. HCF uses the "stress-life" (S-N) method, 

which focuses on the relationship between applied 

stress and the number of cycles to failure (refer to 

Table 1). This method emphasizes elastic 

behavior and uses S-N curves (Wehler curves). 

Failure in HCF results from the gradual 

propagation of microscopic cracks over time, 

without significant changes in the overall material 

structure. It is often initiated by surface 

imperfections or inclusions (Kim & Hwang, 2019). 

Table. 1.  Fatigue: Low vs. High Cycle 

Aspect Low-Cycle 

Fatigue (LCF) 

High-Cycle 

Fatigue (HCF) 

Stress Levels High (near/above 
yield strength) 

Low (below yield 
strength) 

Deformation Plastic 
deformation 

Elastic deformation 

Cycle Count < 104cycles > 105 cycles 

Analysis 
Method 

Strain–Life   
(E – N ) 

Stress–Life  
(S – N) 

Material 
Behavior 

Microstructural 
changes 

(plasticity) 

Microscopic crack 
growth 

Applications Severe stress 
environments 

Vibrations/rotating 
machinery 

 

2.2 Approaches to High-Cycle 
Fatigue 

The object of our study is high-cycle fatigue (HCF) 

under multiaxial loading. In the case where the 

modeling process is considered, based on 

experimental observations accompanied by 

theoretical justification, several key approaches 

are available. The main point is to predict the 

formation of macrocracks under the influence of 

cyclic stresses in the elastic regime. The 

equivalent stress criterion of Sines and Crossland, 

most used for HCF, integrates the shear stress 

amplitude with the hydrostatic stress. 

Equation on Sines: 

√
1

3
[(𝜎1𝑎 − 𝜎2𝑎)2 + (𝜎2𝑎 − 𝜎3𝑎)2 + (𝜎1𝑎 − 𝜎3𝑎)2] ≤

≤ 𝐴 − 𝛼(𝜎𝑥𝑚 + 𝜎𝑦𝑚 + 𝜎𝑧𝑚) 

Crossland's criterion includes the maximum 

hydrostatic stress.  

Balthazar and Malcher review various theories for 

predicting, emphasizing the importance of 

invariant stress measurement methods (Balthazar 

& Malcher, 2007).  

In a study by Li and de Freitas (2002), a rapid 

procedure for assessing HCF under multiaxial 

random loading using Crossland's criterion for 

fatigue damage assessment is presented. 

Evidence supports the unified mechanics’ theory 

for predicting HCF lifetime, which integrates 

principles of materials physics to model 

dislocation, damage accumulation, and 

macrocrack initiation.  

Sandberg's dissertation (2015) examines the 

application of experiments, computational 

methods, and modeling in HCF design, 

emphasizing the importance of accurate material 

parameters and a fine FE mesh for reliable 

predictions. A comparative study validates the 

equivalent stress approach in the Crossland and 

Sines criteria, showing their effectiveness in 

predicting multiaxial fatigue limits (Tchoupou & 

Fosting, 2015). 

The critical plane method identifies the plane with 

the greatest stress (usually a combination of 

normal and shear stress) and estimates durability. 

Models based on strains with predominantly 

elastic behavior, along with energy models that 

estimate dissipated energy per cycle as an 

indicator of resistance loss and failure, are applied 

in the analysis. (Wei, et al., 2019). 

Hassan Alkarawi's research applied the critical 

plane method, considering various fatigue 

damage models, including the Fatemi-Socie and 

Bannantine-Socie approaches (Alkarawi, 2018). 

Energy-based models play a crucial role in 

assessing fatigue life. The statistical distribution of 

strain and fatigue life in the LCF-HCF range is 

analyzed in a paper by Coffin-Manson and 

Morrow, providing insight into the energy 

dissipation per cycle. (Tridello & Paolino, 2023). 
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To further clarify this point, experimental evidence 

shows that in non-linear failure accumulation, 

identical cyclic loads can result in different failure 

rates depending on the load history. An example 

of this is that a pre-stressed condition can reduce 

the number of cycles. It has been found that in the 

nonlinear accumulation of fatigue damage in 

aircraft engine alloys under multi-axial loading, the 

interaction between low-cycle fatigue (LCF) and 

high-cycle fatigue (HCF) cycles increases fatigue 

damage. (Suman, 2013). 

A modified nonlinear fatigue damage 

accumulation model accounting for load 

interaction effects highlights the importance of 

nonlinear damage accumulation in fatigue life 

prediction. (Lv, Huang, Zhu, Gao, & Zuo, 2014) 

Considering the influence of the average stress, at 

the same amplitude, on the stress with a positive 

average value, a faster accumulation of failures is 

achieved. The study of the pre-stress state on 

high-cycle fatigue (HCF) behavior and fatigue 

crack propagation in steel with a complex phase 

composition demonstrates how material fatigue 

resistance is significantly affected. (Kim, Song, 

Sung, & Kim, 2021) A pre-applied stress state can 

reduce the number of cycles, as demonstrated in 

a study on the stress recovery behavior of a shape 

memory Fe-Mn-Si alloy under HCF loading. This 

has been observed under failure conditions due to 

relaxation induced by phase transformation during 

cyclic loading (Ghafoori, Hosseini, Leinenbach, 

Michelis, & Motayalli, 2017) Multi-component 

loads, for variable amplitudes and phases, use 

combinations of Rainflow in identifying cycles, 

such as Miner's rule for accumulated failure: 

𝐷 = ∑
𝑛𝑖

𝑁𝑖

𝑘
𝑖=1 , where ni is the number of cycles at a 

given stress level, and Ni is the life at that level 

(Sun, Wen, Li, Cao, & Fei, 2025). 

Developments in computation approaches have 

produced advanced models for analysis and 

exploration, such as a combination of critical 

planes and energy criteria, for example, the Liu-

Mahadevan model, which integrates normal, 

shear, and hydrostatic components: 

(
𝜎𝑎,𝑐

𝑓−1
)

2

+ (
𝜏𝑎,𝑐

𝑓−1
)

2

+ 𝛽 (
𝜎𝐻,𝑎,𝑐

𝑓−1
)

2

= 1 

where β is a material constant. 

A limitation of this modeling approach lies in the 

material inhomogeneities, which influence crack 

initiation and are challenging to describe using 

macroscopic models. Therefore, the development 

of universal models remains an active area of 

research, especially for complex scenarios such 

as out-of-phase loads and random amplitudes. 

The Liu-Mahadevan model, on top of a unified 

multiaxial fatigue damage model, integrates 

components of normal, shear, and hydrostatic 

stresses, providing a comprehensive approach to 

fatigue life prediction (Liu & Mahadevan, 2005) 

This case has been validated using experimental 

results for isotropic and anisotropic materials, 

demonstrating its general applicability. The 

microstructure of the material significantly 

influences the high-cycle fatigue (HCF) behavior 

through several key mechanisms, like grain size. 

Smaller grains (fine grain structure) improve 

toughness due to the Hall-Petch effect, where 

grain boundaries act as crack propagation 

barriers. For example, alloys with controlled grain 

size show higher fatigue resistance. A study of the 

high-cycle fatigue behavior of β-annealed Ti-6Al-

4V alloy shows that smaller primary α-grains 

improve the resistance to HCF due to the 

increased yield strength (Jeong, Kwon, Goto, & 

Kim, 2017). Investigation of the very high cycle 

fatigue (VHCF) behavior of Ti-6Al-4V alloy 

highlights the role of microstructure in crack 

initiation and fatigue behavior (Yuan, Zhao, Yue, 

Gu, & Zhang, 2024)  

The Hall-Petch effect is extensively documented 

in materials science. The grain boundaries act as 

pinch points that impede the propagation of 

dislocations, thereby increasing the yield strength. 

Studies on titanium alloys have shown that fine-

grained lamellar microstructures exhibit better 

resistance to fatigue crack initiation and 

propagation compared to coarser-grained 

structures. Anisotropic materials with preferential 

grain orientation can form critical planes with 

increased stress, which accelerates cracking. 

Fatigue strength may improve in solid phases 

containing carbides or intermetallic compounds. 

There are exceptions, such as sulfide inclusions 

(MnS) in steels, which promote crack initiation 

under cyclic loading and act as stress 

concentrators. The non-uniform distribution of 

alloying elements (e.g., Mn, C) also leads to local 

changes in mechanical properties which influence 
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failure propagation. This applies to pores and 

microcracks, leading to the gradual formation and 

growth of larger cracks over time. Thermal or 

mechanical processing generates residual 

stresses in the microstructure that can accelerate 

or retard the accumulation of damage depending 

on their load orientation. The review of the effect 

of sulfide inclusions on the mechanical properties 

and failures of steel components is reviewed by 

Maciejewski (2015). The presence of sulfide 

inclusions in steel highlights their influence on the 

fatigue limit and crack propagation rate (Bigelow & 

Flemings, 1975)  

Recrystallization alters the grain structure and 

phase distribution, and hardened steel with a 

martensitic structure exhibits a higher fatigue limit 

compared to pearlitic structures, which are 

typically formed after rolling. Martensite in steel 

significantly increases the yield strength and 

hence the fatigue limit of the material. Studies 

have shown that the ultrafine-grained ferritic-

martensitic structure has a substantially higher 

fatigue limit than the coarse-grained ones. 

(Nikitina, Islamgaliev, Ganeev, & Frik, 2023). It 

has been observed that under cyclic loading, the 

ferrite-perlite structures accumulate defects more 

rapidly due to the uneven distribution of 

cementitious lamellae. Treatments aimed at 

producing bainitic structures reduce this effect due 

to the finer microstructure. 

Mean stress plays a significant role in high-cycle 

fatigue (HCF), influencing the endurance limit and 

failure accumulation rate. This refers to 

mechanical stress, not electrical stress, and is 

defined as the mean value of the cyclic load. Its 

effects become evident through the following 

mechanisms. 

For a uniform stress amplitude, a positive mean 

stress (e.g., tensile) reduces the material's 

durability. This is accounted for in classical fatigue 

models. 

˗ Goodman curve: 

𝜎𝑎 = 𝜎−1(1 −
𝜎𝑚

𝜎𝑈𝑇𝑆
)2 

where: 𝜎𝑎 - is the allowable stress amplitude, 

σ-1- is the endurance limit of a symmetrical 

cycle, σm is the mean stress, σUTS - is the 

tensile strength 

Goodman dependence is a widely used method in 

fatigue analysis to account for the impact of mean 

strain on fatigue life. It is often represented 

graphically in a Goodman diagram, which plots 

mean strain versus alternating strain. The 

Goodman diagram helps engineers assess the 

safe cyclic loading of a part by ensuring that the 

combination of mean and alternating stresses 

remains below the failure curve. Positive mean 

stress typically reduces fatigue life because it 

increases the effective peak stress experienced 

by the material, bringing it closer to the critical 

failure threshold. Understanding the relationship 

between mean stress and fatigue life is crucial for 

designing components that endure cyclic loading 

conditions. 

˗ The Gerber curve in fatigue analysis: 

𝜎𝑎 =  ( 1 −  
𝜎𝑚

𝜎𝑈𝑇𝑆
 ) 

The Gerber curve is often used in fatigue 

assessment to account for the impact of mean 

strain on fatigue life. It is especially well-suited for 

materials exposed to cyclic loading. The 

comparison between Goodman and Gerber 

correction methods highlights the effectiveness of 

the Gerber curve for dealing with different mean 

stress scenarios, thus accounting for the nonlinear 

relationship between the mean stress and the 

alternating stress. The Gerber curve integrates 

both tensile strength and mean stress, offering a 

comprehensive approach to fatigue analysis. This 

makes it suitable for a wide range of materials and 

applications. The mean stress, however, can 

induce local residual stress in the material that 

alters the resistance to crack initiation. For 

example, under positive mean stress, dislocations 

move more easily, accelerating the formation of 

microcracks. 

The influence of residual stress on crack initiation 

and propagation has been considered in detail in 

various studies, highlighting how positive mean 

stress can accelerate microcrack formation 

(Nakada, Norimitsu, Tanaka, Tsuchiyama, & 

Takaki, 2015)  

In alloys with a heterogeneous phase structure 

(e.g., pearlitic steels), the average stress 

influences the stress distribution between ferrite 

and cementite, thereby modifying local ductility. 

The Sines criterion is used in fatigue analysis to 

predict the lifetime of materials under multiaxial 
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loading. It combines the shear stress amplitude τa 

with the hydrostatic stress σH, which includes the 

mean stress. The criterion is expressed as follows: 

𝜏𝑎  +  𝛼𝜎𝐻 ≤ 𝛽 

where α and β are material constants. 

A comprehensive review of defect accumulation 

models for multiaxial fatigue testing, including all 

criteria considered to date, is also made 

(Meggiolaro, Pinho de Castro, & Miranda, 2009).  

For a combination of normal and shear voltages, 

the average voltage is included in the equivalent 

voltage criteria. For example, in the heat treatment 

industry, controlling the mean stress by thermal 

processes (e.g., backwash) can improve durability 

by relaxing residual stress. In HCF calculations, 

engineers use mean stress correction factors to 

avoid conservative predictions.  

The average stress is influenced by the 

microstructure of the materials. At positive mean 

stress, dislocations move more easily in the 

grains, which accelerates the formation of 

microcracks. The average stress can affect the 

orientation of the grains, which changes the local 

mechanical properties and fatigue resistance. In 

alloys with a heterogeneous microstructure, the 

mean stress can affect the distribution of stress 

between different phases, which changes the local 

ductility and resistance to crack initiation.  

The presence of hard inclusions (e.g., carbides) in 

alloys can be affected by the average stress, 

increasing the probability of crack formation 

around them. It can induce residual stresses in the 

material that alter the microstructure and affect 

fatigue behavior.  

In some materials, mean stress can lead to 

microstructural changes, such as the formation of 

martensitic structures in some alloys, which 

changes the mechanical properties. 

3 ANNEXES AND CONTRIBUTIONS 
OF THE RESEARCH REVIEW 

Since the study must have a focus, the task we 

have set ourselves in this review is to determine 

the relevance of fatigue damage prediction and 

optimization for the automotive and aviation 

industries in the current research encountered: 

In both industries, complex loading conditions 

depend on components exposed to multi-axial 

loads, necessitating advanced fatigue prediction 

models. For example, research on fatigue life 

prediction in automotive applications highlights the 

importance of considering real-world loading 

scenarios that involve complex stress distributions 

and multi-axial forces (Agrawal, et al., 2023)  

Studies of additively manufactured lattice 

structures in aerospace applications highlight the 

need for accurate fatigue failure models to ensure 

structural integrity under high-cycle fatigue 

regimes. (Colucia & De Pasquale, 2023). 

It has already been noted that weight reduction is 

a priority in both sectors, requiring a precise 

understanding of fatigue behavior to avoid over-

design. A study of steel-polymer plates for 

automotive fuel cells showed how topology 

optimization and material selection can reduce 

weight while maintaining structural performance 

(Anand, Mielke, Heidrich, & Xiangfan, 2024) To 

reduce the section while ensuring the same 

design stress, it is necessary to implement 

materials with relatively higher strength. 

(Tontchev, Zumbilev, Yankov, & Zumbilev, 2021). 

This problem requires a multi-criteria method of 

solving, the governing parameters being either the 

alloying elements (such as quantity and type) or 

processing parameters, and the quality indicator is 

the technologically innovative effect. The 

introduction of new materials, such as composites 

and additive manufacturing, necessitates the 

updating of fatigue models. 

Studies of the fatigue behavior of CFRP materials 

reveal challenges under inconsistent loading 

conditions, highlighting the need for tailored 

predictive tools (De Giorgi, Nobile, & Palano, 

2022) This involves subjecting CFRP specimens 

to cyclic loading to determine their fatigue life and 

damage progression. Testing may be performed 

under tensile, compressive, or flexural conditions. 

In these methods, temperature changes are used 

to detect fatigue failures and evaluate the stiffness 

reduction of CFRP materials. Delamination testing 

aims to measure the rate of delamination growth 

under cyclic loading. The fatigue limit for CFRP 

materials typically falls in the range of 50-70 % of 

their tensile strength, and the critical number of 

cycles averages about 3 million cycles. 

The high costs associated with experimental 

testing make modeling extremely important for 

reducing development time and costs. The 
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aerospace industry uses digital mock-ups and 

simulation tools to optimize design processes and 

reduce costs, highlighting the value of predictive 

modeling (Dassault Systemes, 2025). 

3.1 Inputs in Mathematical Modeling 
of High-Cycle Fatigue Using 
Regression Models 

Mathematical modeling approaches for high cyclic 

fatigue (HCF) using regression models is an area 

in materials science and engineering that 

combines experimental data with mathematical 

approaches to predict component lifetimes. 

Modeling HCF is difficult because failure occurs at 

stress levels well below static failure thresholds, 

and microstructural features play a dominant role 

in crack initiation. There is significant statistical 

scatter in fatigue life data, and environmental 

factors can dramatically alter fatigue behavior. 

Regression models are used to establish 

mathematical relationships between input 

variables (stress amplitude, mean stress, 

frequency, temperature, etc.) and output variables 

(cycles to failure, probability of failure). These 

models can range from simple curve-fitting 

approaches to complex machine-learning 

algorithms. A detailed discussion of regression 

modeling techniques and their applications is 

presented below. 

These models primarily use stress amplitude as 

the predictor variable and cycles to failure as the 

outcome. When multiple factors affecting fatigue 

life are considered, this approach may include 

different factors but may oversimplify nonlinear 

relationships in fatigue. In this case, it is modeled 

with nonlinear regression models, of which the 

more sophisticated include Gaussian process 

regression or neural networks. 

New materials, such as composites and additive 

manufacturing (AM), are changing fatigue 

prediction models in the automotive and 

aerospace industries by introducing new 

challenges and requiring advanced computational 

approaches. Composite materials (e.g., carbon 

fiber-reinforced polymers) exhibit anisotropic 

properties, requiring fatigue models to account for 

directional dependencies. Enhanced series-

parallel (ESP) constitutive models simulate 

composites by treating the fibers and matrix as 

parallel materials in the alignment direction and 

serial in the transverse directions, enabling 

accurate predictions of stresses and strains under 

multiaxial stress. Cumulative fatigue damage 

indices update component properties (e.g. 

stiffness degradation) layer by layer to predict 

residual strength in laminated structures 

(Salomon, Rastellini, Oller, & Onate, 2005). 

Surface and defect parameters are integrated into 

the S-N curve models to constrain fatigue 

behavior. For AM 316L stainless steel, these 

parameters adjust the predictions based on the 

laser settings and subsequent machining (e.g. 

heat treatment) (Serjouei & Afazov, 2022) 

3.2 Regression Models for HCF 

Regression models aim to predict cycles to failure 

based on input variables such as stress amplitude, 

mean stress, temperature, and defect geometry. 

A. Stress-Life (S-N) Curve Modeling 

This classic approach fits experimental data to 

equations like: 

1. Basquin's equation: 𝜎𝑎 = 𝜎𝑓
′(2𝑁)𝑏, where 𝜎𝑎 

is stress amplitude and 𝑁, cycles to failure. 

2. Power law relationships:  

𝑙𝑜𝑔(𝑁) = 𝐴 − 𝐵 ⋅ 𝑙𝑜𝑔(𝜎). 

3. Stromeyer’s equation:  

𝑆 = 𝑆0 + (𝑆1 − 𝑆0)𝑒−𝛼𝑁. 

These models primarily focus on stress 

amplitudes as the predictor variable and are 

widely used for metals and alloys. 

B. Multiple Linear Regression 

This method incorporates multiple factors 

affecting fatigue life: 

𝑙𝑜𝑔(𝑁) = 𝛽0 + 𝛽1(𝜎𝑎) + 𝛽2(𝜎𝑚) + 𝛽3(𝑓𝑟𝑒𝑞)

+ 𝛽4(𝑡𝑒𝑚𝑝) 

While simple, it may oversimplify non-linear 

relationships inherent in fatigue phenomena. 

These models focus primarily on stress amplitude 

as a predictor variable and are widely used for 

metals and alloys (Zhou, et al., 2022). 

Advanced nonlinear approaches include methods 

such as Gaussian regression, which effectively 

captures complex interactions between variables. 

In composite materials, moisture absorption can 

degrade matrix properties and reduce interfacial 

bonding, affecting life predictions. Regression 
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models must account for time-dependent 

environmental degradation. Symbolic regression 

combining domain knowledge with machine 

learning for interpretation and accuracy (e.g., 

defect geometry effects in AlSi10Mg alloys) (Yu, 

et al., 2023). Symbolic regression has been 

applied to predict HCF life in Laser Powder Bed 

Fusion (L-PBF) AlSi10Mg alloys. By integrating 

defect geometries (size, location, morphology), 

these models outperform traditional empirical 

approaches in accuracy and generalization. 

Neural networks encompass highly nonlinear 

behaviors, but in some cases may lack physical 

interpretation. Nonetheless, techniques such as 

polynomial regression or machine learning models 

(e.g. neural networks) address the complex 

relationships between input variables and fatigue 

life outcomes (Meeker, et al., 2024) Bayesian 

regression, (Bayesian methods) incorporate prior 

knowledge and update predictions based on new 

data, effectively managing fatigue life variability 

caused by inconsistencies in materials or 

environmental factors (Gibson, Roger, & Cross, 

2023). 

Material fatigue inherently involves scatter, best 

described by random effects models that account 

for variability in individual batches or test 

conditions by including both fixed effects (e.g., 

stress amplitude) and random effects (e.g., batch-

to-batch variation). (Dong-Yoon & Yu, 2014). 

Probabilistic methods related to the Weibull 

distribution modeling the failure probability under 

cyclic loading belong to this group of methods 

(Karolczuk, Skibicki, & Pejkowski, 2022). 

Bayesian regression accounts for uncertainty in 

forecasts and random effects models 

incorporating variability in different batches or 

material types (Gu, Lian, Lv, & Bao, 2022). 

In deriving reliable and adequate models in HCF 

for DM, it is necessary to ensure that a sufficient 

experimental qualitative sample supports model 

development. To verify the accuracy of 

predictions, validation should be performed using 

separate datasets. Uncertainty can be quantified 

by incorporating statistical variance into the 

forecasts using probabilistic methods. It should 

also be assessed whether the models are 

consistent with physical mechanisms or are purely 

empirical. The latter aligns with the application's 

scope, which is evaluated based on the model's 

limitations regarding material types, stress ranges, 

and impact environments. 

By combining experimental knowledge with 

advanced regression techniques, reliable 

predictions can be achieved while effectively 

managing data variability. This approach 

integrates statistical and computational methods 

to account for inherent uncertainties, scatter, and 

nonlinear relationships. All of this is critical for 

safety-critical industries such as automotive and 

aerospace. This computational approach is 

resorted to for a well-defined problem with a small 

data sample. When the observations are in a 

larger volume, the use of machine learning 

algorithms is resorted to which have their 

advantages over traditional regression models for 

HCF. The regression techniques are summarized 

in Table 2. 

Table 2. Summary of Regression Techniques 

Methods  Advantages  Limitations  

Stress-Life  

(S-N Curve) 

Simple, widely 

used 

Limited to a 

single-variable 
analysis 

Multiple Linear 
Regression 

Incorporates 
multiple factors 

Oversimplifies 

non-linear 
effects 

Symbolic 
Regression 

Balances of 
accuracy and 
interpretability 

Requires 
domain-specific 

knowledge 

Probabilistic 
Models 

Accounts for 
scatter 

Computationally 
intensive 

3.3 Machine Learning vs. Regression 
for HCF: Advantages 

The main advantage of machine learning (ML) 

algorithms over traditional regression models for 

predicting high cyclic fatigue (HCF), consists in 

sampling data with many variables and improving 

prediction accuracy. The data variables can be 

elements of the material compositions in their 

compositions or parameters of the modes by 

which each sampled material was produced. 

ML algorithms, such as neural networks and 

gradient boosting, are excellent at modeling 

nonlinear interactions between variables (e.g., 

voltage amplitude, temperature, frequency) that 

traditional regression models often simplify. This 

makes ML particularly useful for fatigue life 

prediction of materials with complex behavior, 

such as composites or alloys produced by 

additives (Singal, et al., 2013).  
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It has been shown that in engineering applications 

ML can identify subtle patterns in fatigue data that 

traditional models may miss, leading to more 

reliable predictions. (Koprinkova-Hristova & 

Tonchev, 2011). (Koprinkova-Hristova & Tonchev, 

2012). 

3.3.1 High Dimensional Data Processing 

Traditional regression models struggle to process 

large datasets with multiple predictors or features. 

ML algorithms can efficiently process high-

dimensional data by applying feature selection 

techniques (e.g., random forests or Lasso 

regression) to identify the most relevant variables. 

One application outside the technique domain of 

the method is referred to in the next work 

(Chowdhury, et al., 2023). 

In contrast to deterministic regression models, 

machine learning techniques often yield 

probabilistic results, enabling the quantification of 

uncertainty. This is particularly valuable for HCF 

modeling, where the variability of fatigue life data 

is significant due to the heterogeneity of material 

and environmental factors (Singal, et al., 2013)  

ML algorithms can integrate diverse datasets, 

such as experimental fatigue data, along with 

microstructural information or environmental 

conditions, resulting in a multidimensional 

analytical framework. This adaptability allows the 

creation of more comprehensive models than 

traditional approaches. ML automates the model 

training and optimization process, reducing the 

manual intervention required in conventional 

regression analysis. In addition, ML models are 

scalable and can be updated efficiently as new 

data become available ML algorithms provide 

advanced feature importance analysis, and 

information about the relative importance of input 

features (e.g., voltage amplitude versus average 

voltage). All of this helps researchers understand 

which factors have the greatest influence on 

fatigue behavior (Desai, Wang, Vaduganathan, 

Evers, & Schneeweiss, 2020). 

While ML offers these advantages, it also has 

limitations, including the need for large data 

samples to enable effective learning. It may lack 

physical interpretation compared to regression 

models based on fatigue mechanisms. 

Computational intensity compared to simpler 

regression techniques. However, using strengths, 

ML algorithms are increasingly being adopted for 

advanced HCF modeling where traditional 

methods fail to address complexity and variability. 

Machine learning algorithms now allow real-time 

adjustments to fatigue testing parameters, 

reducing cycle times by up to 50% while improving 

fault detection accuracy. For example, high-

performance systems combined with artificial 

intelligence analysis offer simultaneous evaluation 

of lightweight materials such as composites under 

different stress conditions. Specialized neural 

networks predict fatigue life for advanced 

composites and aluminum alloys, addressing 

challenges in automotive design. These models 

incorporate data from Digital Image Correlation 

(DIC) and Acoustic Emission (AE) sensors to map 

crack propagation. (Avevor, Adeniyi, Eneejo, & 

Selasi, 2024) 

Physically Informed Neural Networks (PINNs) 

simulate multiaxial loading scenarios, reducing 

dependence on physical prototypes. This 

approach has reduced development costs by 30% 

in automotive component validation (Schneller, et 

al., 2022)  

3.3.2 Contributions to Aerospace 
Engineering Related to Material 
Fatigue 

The optimization of additive manufacturing for AI-

driven models has refined the microstructural 

properties of Ti-6Al-4V alloys used in aerospace 

components, resulting in a 20-30% improvement 

in fatigue crack resistance. Grain orientation and 

cooling rate are optimized through machine 

learning. It is critical for turbine blades and 

airframe parts. In terms of design, artificial 

intelligence-driven bio-printed geometries reduce 

component weight by 15% while maintaining yield 

strength, facilitating the development of 

lightweight structures for space exploration 

applications (Awd & Walther, 2025). 

A neural network trained on 250,000 finite element 

samples predicted fatigue failure in rocket fuel 

chambers with an average error of 6.8%, 

achieving results in 0.1 ms. It is 3,000 times faster 

than traditional finite element methods. Early 

NASA prototypes use neural networks to estimate 

fatigue damage in reusable rocket engines during 

operation, enabling adaptive load management.  

Physically Informed Neural Networks (PINNs) 

determined embedding defect characteristics 

(size, position, morphology) into loss functions 

improves predictions for additively manufactured 
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Ti-6Al-4V alloys. PINNs reduce errors by 20-30% 

in high-cycle modes compared to purely data-

driven models, A characteristic feature of PINNs is 

that they generalize better with limited 

experimental data, which is critical for expensive 

testing of aerospace composites. Fiber Bragg 

gratings (FBGs) and vibration sensors feed live 

data into neural models, enabling adaptive 

updates to in-flight fatigue lifetime estimates (Li, 

Sun, Tian, Huang, & Zhao, 2024). Machine 

learning models (e.g., AutoGluon) have been 

shown to extract fatigue curves incorporating 

defect statistics improving the reliability of 

selective laser-melted (SLM) titanium parts. 

Physically informed neural networks (PINNs) 

account for AM-induced defects (e.g., porosity, 

nonmelted particles) in Ti-6Al-4V and TA15 alloys, 

reducing prediction errors by 20-30% compared to 

traditional methods. Defect characteristics such as 

size and morphology are incorporated into the loss 

functions for physically consistent results (Liu, 

Gao, Zhu, He, & Xu, 2025), (Wang, Zhu, Luo, Niu, 

& He, 2023)  

ANNs trained on a single composite (e.g., 

IM7/977) accurately predict fatigue life for new 

materials (e.g., T800/5245), reducing 

experimental costs (Mathur, Gope, & Sharma, 

2007). Radial Basis Function Neural Networks 

(RBF-NN) predict fatigue crack growth in aircraft-

grade aluminum alloys (e.g., 2024-T3, 7075-T6) 

with high accuracy, enabling proactive 

maintenance (Younis, Kamal, Younis, & Younis, 

2021)  

Machine learning plays a transformative role in 

optimizing material properties for high-cycle 

fatigue resistance, particularly in advanced 

manufacturing and critical engineering 

applications. It involves machine learning models 

analyzing huge datasets from ultrasonic fatigue 

tests and microstructural imaging to identify and 

refine grain orientation, phase uniformity, and 

defect distribution. Improved resistance to fatigue 

crack initiation and propagation is being 

monitored, with studies reporting a 20-30% 

improvement in fatigue life for critical components 

such as turbine blades and housings. ML 

algorithms play a crucial role in optimizing additive 

manufacturing parameters—such as temperature 

gradients and cooling rates—that influence 

microstructure evolution. This enables the 

production of titanium and aluminum alloys with 

customized fatigue-resistant properties, reducing 

design iteration cycles by over 50% and 

accelerating the development of safer and more 

durable components. 

By accurately predicting fatigue thresholds and 

performance based on process parameters and 

microstructural characteristics, ML models 

significantly reduce the need for extensive 

physical testing. This is particularly valuable for 

additively manufactured materials where 

traditional evaluation methods are time-

consuming and expensive. Deep learning and 

genetic algorithms facilitate the reverse 

engineering of complex, bio-inspired geometries 

for metamaterials. These ML-driven designs 

achieve up to 15% weight reduction while 

maintaining or improving yield strength and fatigue 

resistance, which is critical for aerospace and 

automotive applications (Awd, Saeed, 

Muenstermann, Faes, & Walther, 2024).  

Table 3.  A summary of the role of machine 
learning in determining material fatigue 

Role Impact 

Microstructural 

optimization 

Increases fatigue crack 

resistance by 20-30% 

Optimization of 

process 
parameters 

Reduces cycles of, controlling 

design by >50% and adjusts 
fatigue properties at high cycles 

Predictive 

modeling 

Minimizes costly physical testing 

and accelerates process 
development 

Material 
design/ 
geometry 

Enables lightweight, high-
strength designs with up to 15% 
weight savings 

Physics-based 
modeling 

Improves the accuracy and 
reliability of predictions 

Real-time 
monitoring 

Improves manufacturing 
precision and consistency 

 
Physical machine learning frameworks combine 

experimental data with first-principles models 

(e.g., fracture mechanics, cyclic plasticity) to 

provide robust, physically consistent predictions. 

This approach improves model explainability and 

reliability, bridging the gap between empirical and 

theoretical understanding. ML techniques enable 

real-time process monitoring and anomaly 

detection during manufacturing, ensuring 

consistent quality, reducing material waste, and 

improving structural integrity. Based on the study 

performed, summarized results are given in 

Table 3.  
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4 CONCLUSIONS 

Despite the progress of AI models, there are 

difficulties in extrapolating beyond the ranges of 

training data. Positive experiences have been 

gained in the use of hybrid approaches combining 

physics models and transfer learning. Here, we 

highlight the contributions of AI and digitalization 

to fatigue testing in the aerospace industry. Neural 

networks enable ultra-fast and precise failure 

predictions for critical components. In the 

automotive sector, AI helps optimize design by 

reducing structural weight. Future research needs 

to address data shortage. While PINNs provide 

physically consistent results, explaining ANN 

decisions remains crucial for certification. Neural 

models transform aerospace fatigue analysis from 

reactive inspections to predictive, simulation-

driven workflows – essential for extending 

component life in next-generation spacecraft and 

hypersonic vehicles. Machine learning enables 

the integration of intelligent, adaptive data 

processing systems into the design and testing 

stages, providing improved fatigue resistance, 

reliability, and efficiency in high-performance 

engineering sectors. 
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