MULTIAXIAL HIGH-CYCLE FATIGUE IN MODERN ENGINEERING: PERSPECTIVES AND CONTRIBUTIONS
Abstract
The process of modeling quality indicators from mechanical and simulation tests aiming to establish the fulfillment of specific technical requirements is linked to resource efficiency. Imposing such a modern approach in the design process increases the efficiency of the used materials' expected capacity. The proposed design enhances material strength while reducing structural weight, leading to lower fuel consumption and a corresponding decrease in greenhouse gas emissions. Its successful implementation relies on continuous research to identify innovative solutions and advanced computational approaches that expand existing knowledge and best practices. This paper presents a comprehensive review of multiaxial and multicycle fatigue, a critical factor in the design of essential components exposed to complex loading conditions. The purpose is to review and examine the current state of this type of testing, modeling approaches, experimental techniques, and current real-world applications in the fields of aerospace and automotive design. The aim is to draw the attention of engineers, researchers, and industry professionals working with high-performance materials and structures that study complex stresses.
Keywords
Full Text:
PDFReferences
Agrawal, M. K., Sree, V. B., Maan, P., Pratap, B., Zabibah, R. S., & Sharma, V. (2023). FEA-Based Investigation of Fatigue Life and Durability of Materials and Structures in Automotive Applications. 15th International Conference on Materials Processing and Characterization (ICMPC 2023). 430, p. 11. E3S Web of Conferences. doi:10.1051/e3sconf/202343001115
Alkarawi, H. (2018). A study of fatigue damage models for assessment of steel structures, Master Thesis. Gothenburg: Chalmers University of Technology. Retrieved from https://hdl.handle.net/20.500.12380/255641
Anand, S. C., Mielke, F., Heidrich, D., & Xiangfan, F. (2024). Optimization, Design, and Manufacturing of New Steel - FRP Automotive Fuel Cell Medium Pressure Plate Using Compression Molding. Vehicles, 6(2), 850-873. doi:10.3390/vehicles6020041
Avevor, J., Adeniyi, M., Eneejo, L., & Selasi, A. (2024). Machine Learning-driven Predictive Modeling for FRP Strengthening Structural Elements. A Review of AI-based Damage Detection. Fatigue Prediction, and Structural Health Monitoring. International Journal of Scientific Research and Modern Technology, 3(8), 1-20. doi:10.38124/ijsrmt.v3i8.420
Awd, M., & Walther, F. (2025, March). AI-Powered Very- High-Cycle Fatigue Control: Optimizing Microstructural Design for Selective Lazer Method Ti-6AI-4V. Materials, 18(7), 1472. doi:10.3390/ma18071472
Awd, M., Saeed, L., Muenstermann, S., Faes, M., & Walther, F. (2024). Mechanistic machine learning for metamaterial fatigue strength design from first principles in additive manufacturing. Materials & Design, 241, 112889. doi:10.1016/j.matdes.2024.112889
Balthazar, J. C., & Malcher, L. (2007). A review on the main approaches for determination of the multiaxial high cycle fatigue strength. Mechanics of Solids in Brazil, 63-80.
Bigelow, L., & Flemings, M. (1975). Sulfide inclusions in steel. Metall Trans B, 275-283. doi:10.1007/BF02913570
Bin, L., Jianhui, L., & Xiuli, W. (2014). A new multiaxial fatigue life prediction model considering additional hardening effect. Advances in mechanical engineering, 12(6). doi:10.1177/1687814020935331
Chowdhury, M., Leung, A., Walker, R., Sikdar, K. C., O’Beirne, M., Quan, H., & Turin, T. C. (2023). A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population. Scientific Reports, 13(1), Article 13. doi:10.1038/s41598-022-27264-x
Colucia, A., & De Pasquale, G. (2023). Strain-based method for fatigue failure prediction of additively manufactured lattice structures. Sci. Rep., 13(1), 22775. doi:10.1038/s41598-023-49846-z
Dassault Systemes. (2025, 03). Drive Out Cost Despite Growing Complexity of Systems. Retrieved May 25, 2025, from AT Dassault Systemes: https://www.3ds.com/industries/aerospace-defense/drive-costs-down
De Giorgi, M., Nobile, R., & Palano, F. (2022). CFRP Fatigue Damage Detection by Thermal Methods. Materials, 15(11), 3787. doi:10.3390/ma15113787
Desai, R. J., Wang, S. V., Vaduganathan, M., Evers, T., & Schneeweiss, S. (2020). Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. JAMA Netw Open, 3(1). doi:10.1001/jamanetworkopen.2019.18962
DexMat. (2023, Jun 23). Galvorn: The breakthrough material that will transform energy, aeronautics and construction. Retrieved from Ineltec: https://dexmat.com/blog/airline-manufacturers-achieve-sustainable-aviation/
Dong-Yoon, K., & Yu, J. (2014). Statistical Analysis-Based Prediction Model for Fatigue Characteristics in Lap Joints Considering Weld Geometry, Including Gaps. Metals, 14(10), 1106. doi:10.3390/met14101106-41
Ghafoori, E., Hosseini, E., Leinenbach, C., Michelis, J., & Motayalli, M. (2017). Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening. Materials & Design, 133, 349-362. doi:10.1016/j.matdes.2017.07.055
Gibson, S., Roger, S., & Cross, E. (2023). Distributions of fatigue damage from data-driven strain prediction using Gaussian process regression. Structural Health Monitoring, 22(5), 3065-3076. doi:10.1177/14759217221140080
Gu, C., Lian, J., Lv, Z., & Bao, Y. (2022). Microstrucute-based Fatigue Modeling with Residual Stresses: Effect of Inclusion Shape on Very High Cycle Fatigue Life. Crystals, 12(2). doi:10.3390/cryst12020200
Jeong, D., Kwon, Y., Goto, M., & Kim, S. (2017). High cycle fatigue and fatigue crack propagation behavior of beta-annealed Ti-6AI-4V alloy. International Mech Mater Eng, 12(1). doi:10.1186/s40712-016-0069-8
Karolczuk, A., Skibicki, D., & Pejkowski, L. (2022). Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress-Strain Conditions. Materials, 15(21), 7797. doi:10.3390/ma15217797
Kim, S., Song, T., Sung, H., & Kim, S. (2021). Effect of Pre-Straining on High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Complex Phase Steel. Met. Mater. Int., 27, 3810-3822.
Kim, Y., & Hwang, W. (2019). High-Cycle, Low-Cycle, Extremely Low-Cycle-Fatigue and Monotonic Fracture Behaviours of Low-Carbon Steel and Its Welded Joint. Materials, 12(24), 4111. doi:10.3390/ma12244111
Koprinkova-Hristova, P., & Tonchev, N. (2011). Neural Networks Approach to Optimization of Steel Alloys Composition. IFIP Advances in Information and Communication Technology, 363, 36-46. doi:10.1007/978-3-642-23957-1
Koprinkova-Hristova, P., & Tonchev, N. (2012). Echo State Networks for Multi-dimensional Data Clustering. Artificial Neural Networks and Machine Learning – ICANN 2012. 7552. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33269-2_72
Li, B., & Freitas, M. d. (2002). A procedure for rapid evaluation of high-cycle fatigue under multiaxial random loading. Journal of Mechanics, 124(3), 558-563. doi:10.1115/1.1485291
Li, H., Sun, G., Tian, Z., Huang, K., & Zhao, Z. (2024). A physics-informed neural network framework based on fatigue indicator parameters for very high cycle fatigue life prediction of an additively manufactured titanium alloy. Fatigue & Fracture of Engineering Material & Structures. doi:10.1111/ffe.14363
Liu, Y., & Mahadevan, S. (2005). Probabilistic fatigue life prediction of multidirectional composite laminates. Composite structures, 69, 11-19. Retrieved from http://vucoe.drbriansullivan.com/wp-content/uploads/Liu-and-Mahadevan-paper.pdf
Liu, Y., Gao, X., Zhu, S., He, Y., & Xu, W. (2025). Fatigue life prediction of selective laser melted titanium alloy based on a machine learning approach. Engineering Fracture Mechanics, 314, 110676. doi:10.1016/j.engfracmech.2024.110676
Lv, Z., Huang, H.-Z., Zhu, S.-P., Gao, H., & Zuo, F. (2014). A modified nonlinear damage accumulation method. International Journal of Damage Mechanics, 24(2), 168-181. doi:10.1177/1056789514524075
Maciejewski, J. (2015). The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components. J Fail. Anal. and Preven., 15, 169-178. doi:10.1007/s11668-015-9940-9
Mathur, S., Gope, P., & Sharma, J. K. (2007). Prediction of Fatigue Lives of Composites Material by Artificial Neural Network. Proceedings of the SEM 2007 Annual Conference and Exposition (p. Paper 260). Springfield, MA, USA: Society for Experimental Mechanics, Inc.
Meeker, W. Q., Escobar, L. A., Pascual, F. G., Hong, Y., Liu, P., Falk, W. M., & Ananthasayanam, B. (2024). Modern Statistical Models and Methods for Estimating Fatigue-Life and Fatigue-Strength Distribution from Experimental Data. arXiv. doi:10.48550/arXiv.2212.04550
Meggiolaro, M. A., Pinho de Castro, J. T., & Miranda, A. (2009). Evaluation of multiaxial stress-strain models and fatigue life prediction methods under proportional loading. Proceedings of the Second International Symposium on Solid Mechanics (pp. 365-384). Rio De Janeiro: Brazilian Society of Mechanical Sciences and Engineering.
Nakada, N., Norimitsu, K., Tanaka, Y., Tsuchiyama, T., & Takaki, S. (2015). Strengthening of Pearlitic Steel by Ferrite. Metals, 14(3), 2036-2038. doi:10.3390/met14030254
Nikitina, M., Islamgaliev, R., Ganeev, A., & Frik, A. (2023). Enhanced Fatigue Limit in Ultrafine-Grained Ferritic Martensic Steel. Materials, 16(4), 254. doi:10.3390/ma16041632
Pineau, A., Gailletaud, G., & Lindley, T. (1996). Multiaxial Fatigue and Design. Wiley & Sons, Incorporated, John.
Priarone, P. C., Catalano, A. R., & Settineri, L. (2023). Additive manufacturing for the automotive industry: on the life-cycle environmental implications of material substitution and lightweighting through re-design. Progress in Additive Manufacturing, 8, 1229-1240. doi:10.1007/s40964-023-00395-x
Pryanshu, G. (2023). Advancing Sustainability in Aerospace: Harnessing Magnesium-Based Materials for Greenhouse Gas Emission Mitigation. Journal of Advanced Research in Aeronautics and Space Science, 10, 1-6.
Salomon, O., Rastellini, F., Oller, S., & Onate, E. (2005). Fatigue prediction for Composite Materials and Structures. Control and Prevention of High Cycle Fatigue in Gas Turbine Engines for Land, Sea and Air Vehicles. Meetings Proceedings RTO-MP-AVT-121, Paper 31, (pp. 31-1--22). Neuilly-sur-Seine, France. Retrieved from https://apps.dtic.mil/sti/tr/pdf/ADA469538.pdf
Sandberg, D. (2015). Use of Experiments, Computations and. Stockholm, Sweden: KTH Engineering Sciences. Retrieved from https://www.diva-portal.org/smash/get/diva2:789475/fulltext01.pdf
Schneller, W., Leitner, M., Maier, B., Grün, F., Jantschner, O., Leuders, S., & Pfeifer, T. (2022). Artificial Intelligence Assisted Fatigue Failure Predictions. International Journal of Fatigue, 155(Article 106580), 7. doi:10.1016/j.ijfatigue.2021.106580
Serjouei, A., & Afazov, S. (2022, November, 10; 8 (11): e 11473). Predictive model to design for high cycle fatigue of stainless steels produced by metal additive manufacturing. Heliyon, 8(11). doi:10.1016/j.heliyon.2022.e11473
Singal, A., Mukherjee, A., Elmunzer, B., Higgins, P., Lok, A., Zhu, J., . . . Waljee, A. (2013). Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma. Am J Gastroenterol, 108(11), 1723-30. doi:10.1038/ajg.2013.332
Suman, S. K. (2013). Nonlinear Fatigue Damage Accumulation in Aircraft Engine Alloys Multiaxial Loading. (N. D. University, Ed.) Fargo, North Dakota: North Dakota State University. Retrieved from North Dakota University: https://library.ndsu.edu/server/api/core/bitstreams/58e049c6-a84a-4d32-94e5-4a7af1718860/content
Sun, Y.-P., Wen, J.-R., Li, J., Cao, A.-F., & Fei, C.-W. (2025). Novel Integrated Model Approach for High Cycle Fatigue Life and Reliability Assessment of Helicopter Flange Structures. Aerospace, 12(2), 78. doi:10.3390/aerospace12020078
Tchoupou, K. M., & Fosting, B. (2015). Fatigue Equivalent Stress State Approach Validation in None-conservative Criteria: A Comparative Study. Latin American Journal of Solids and Structures(12), 2506-2519. doi:10.1590/1679-78251784
Tontchev, N. T., Zumbilev, A. P., Yankov, E. H., & Zumbilev, I. A. (2021). Analysis of Multiple Indicators of Ion Nitrided Layers of BH11 Steel. Key Engineering Materials, 902, 21-27. doi:10.4028/www.scientific.net/kem.902.21
Tridello, A., & Paolino, D. (2023). LCF-HCF strain life model: Statistical distribution and design curves based on the maximum likelihood principle. Fatigue Fract Master Structures, 46(6), pp. 2168-2179. doi:10.1111/ffe.13990
Wang, L., Zhu, S.-P., Luo, C., Niu, X., & He, J.-C. (2023). Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials. Phil. Trans. R. Soc. A.38120220386. doi:10.1098/rsta.2022.0386
Wei, H., Chen, J., Carrrion, P., Imanian, A., Shamsae, N., Lyyer, N., & Lui, Y. (2019). Multiaxial high-cycle fatigue modeling for random loading. ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture. 300, p. Article 12005. MATEC Web of Conferences. doi:10.1051/matecconf/201930012005
Younis, H. B., Kamal, K., Younis, H. B., & Younis, H. B. (2021). Prediction of Fatigue Crack Length in Aircraft Aluminum Alloys using Radial Basis Function Neural Network. International Bhurban Conference on Applied Sciences & Technology, IBCAST (pp. 328-334). Bhurban: IEEE Xplore. doi:10.1109/IBCAST51254.2021.9393169
Yu, H., Hu, Y., Kang, G., Peng, X., Chen, B., & Wu, S. (2023). High-cycle fatigue life prediction of L-PBF AlSi10Mg alloys: a domain knowledge-guided symbolic regression approach. Philosophical Transactions of Royal Society Publishing a Mathematical, Physical, and Engineering Sciences, 382(2264). doi:10.1098/rsta.2022.0383
Yuan, M., Zhao, X., Yue, Q., Gu, Y., & Zhang, Z. (2024). The Effect of Microstructure on the Very High Cycle Fatigue Behavior of Ti-6AI-4V Alloy. Metals, 14(3), 254. doi:10.3390/met14030254 22
Zhou, X., Bai, Y., Nardi, D. C., Wang, Y., Wang, Y., Liu, Z., . . . Floret-Lopez, J. (2022). Damage Evaluation Modeling for Steel Structures Subjected to Combined High-Cycle Fatigue and High-Intensity Dynamic Loading. International Journal of Structural Stability and Dynamics, 22(03n04), 2240012. doi:10.1142/S0219455422400120
DOI: http://dx.doi.org/10.12709/mest.13.13.02.16
Refbacks
- There are currently no refbacks.

