ONTOLOGY OF BIG DATA ANALYTICS
Abstract
This article describes the features of classification methods and technologies analytics Big Data. There are described: a group of methods and technologies, analytics Big Data that are graded according to the functional relationships and formal model of information technology, the problem of the definition of ontology concepts analytics Big Data. Big Data as a technology turns out to be of great practical importance since it enables solving topical issues of everyday life while at the same time constantly creating new ones. Big Data can change the way we live, work and think. Nowadays the ability to store and analyze large volumes and streams of information turns out to be one of the key preconditions for the successful development of global economy. The countries which will master the most effective ways of working with Big Data are thought to face an industrial evolution of new kind. The branch of Big Data consolidates efforts of the organization in terms of storing, processing and analyzing large data sets. Thus, using the formal model developed as well as the results of the critical analysis conducted, an ontology for the analysis of Big Data may be created. Further research will be focused on investigating methods, models, and tools to refine the ontology for the analysis of Big Data and to provide more effective maintenance for the development of structural components for the model of decision support system for Big Data management.
Keywords
Full Text:
PDFReferences
Aflalo, Y., & Kimmel, R. (2013). Spectral multidimensional scaling. PNAS, vol. 110, no. 45, November 5, Retrieved from: http://www.cs.technion.ac.il/ ~ron/PAPERS/Journal/AflaloKimmelPNAS2013.pdf.
Ageev, A., (2015). Analysts have warned about the dangers of Big Data. Retrieved from: http://bigdata.cnews.ru/news/top/2015-10-23_eksperty_predosteregayut_ot_nepravilnogo_obrashcheniya.
Alper, C., Brown, K., & Wagner, G.R. (2006). New Software for Visualizing the Past. Present and Future, DSSResources.COM, Retrieved from: http://dssresources.com/papers/features/alperbrown&wagner/alperbrown& wagner09212006.html.
Asash. (2015). Big Data from A to Ya. Part 1: Principles of working with large data, the MapReduce paradigm. Retrieved from: https://habrahabr.ru/company/dca/blog/267361/.
Asash. (2015). Big Data from A to Ya. Part 3: Methods and strategies for developing MapReduce applications. Retrieved from: https://habrahabr.ru/company/dca/blog/270453/.
Barsegyan, A.A., Kupriyanov, M.S., Kholod, I.I., Tess, M.D., & Elizarov, S.I. (2009). Analysis of data and processes. BHV-Petersburg, 512 p.
Barsegyan, A.A., Kupriyanov, M.S., Kholod, I.I., Tess, M.D., & Elizarov, S.I. (2009). Analysis of data and processes. BHV-Petersburg, St. Petersburg, 512 p.
Barsegyan, A.A., Kupriyanov, M.S., Stepanenko, V.V., & Kholod, I.I. (2007) Data Analysis Technologies. Data Mining, Visual Mining, Text Mining, OLAP. BHV-Petersburg, St. Petersburg, 384 p.
Berezin, A. (2013). Map-Reduce on the example of MongoDB. Retrieved from: https://habrahabr.ru/post/184130/.
Chubukova, I.A. (2006). Data Mining: A Tutorial. Internet University of Information Technologies: BINOM: Laboratory of Knowledge, Moscow, 382 p.
CNews. (2015). Named the causes braking big data market. Retrieved from: http://bigdata.cnews.ru/news/top/2015-11-20_analitiki_otsenili_tempy_rosta_mirovogo_rynka.
Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD Skills: New Analysis Practices for Big Data. Proceedings of the VLDB'09 Conference, Lyon, France, August 24-28. Retrieved from: http://citforum.ru/database/articles/mad_skills/.
Duke, V., & Samoylenko, A. (2001). Data Mining: training course. St. Petersburg, 368 p.
Einav, L., & Levin, J. (2013). The Data Revolution and Economic Analysis. NBER Working Paper, No. 19035, Retrieved from: http://www.nber.org/chapters/c12942.pdf.
Gadepally, V., & Kepner, J. (2014). Big Data Dimensional Analysis. arXiv:1408.0517v1. Retrieved from: https://arxiv.org/pdf/1408.0517v1.pdf.
Gavrilova, T.A. (2001). Ontology for the study of knowledge engineering. Proceedings of the International Scientific and Practical Conference KDS-2001.
Gavrilova, T.A. (2003). Ontological approach to knowledge management in the development of corporate information systems. News of Artificial Intelligence, №2, pp.24-30.
Gavrilova, T.A., & Khoroshevsky, V.F. (2000). Intelligent Systems Knowledge Base. Piter, St. Petersburg, 384 p.
IBM. (2017). Big Data and analytics. Retrieved from: http://www-03.ibm.com/systems/ru/technicalcomputing/bigdata.html.
Iliinsky, N., & Steele, J. (2011). Designing Data Visualizations. Sebastopol : O'Reilly, 110 p.
Inmon, W.H. (2014). Big Data – getting it right: A checklist to evaluate your environment, DSSResources.COM. Retrieved from: http://dssresources.com/papers/features/ inmon/inmon01162014.htm.
Krum, R. (2014). Cool infographics: effective communication with data visualization and design. Indianapolis: Wiley, 348 p.
Lande, D. (2017). Deep text analysis technology for effective analysis of text data. Retrieved from: http://visti.net/~dwl/art/dz/.
Lebedenko, E. (2013). Google MapReduce technology: divide and conquer. Retrieved from: http://www.computerra.ru/82659/mapreduce/.
Linyuchev, P. (2007). Text Mining: modern technologies on information mines. PC Week, RE №6 (564), February 27 - March 5, Retrieved from: https://www.pcweek.ru/idea/article/detail.php?ID=82081.
Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., & Rishnyak, H. (2017). Classification Methods of Text Documents Using Ontology Based Approach. Advances in Intelligent Systems and Computing, Springer International Publishing, pp.229-240. DOI: 10.1007/978-3-319-45991-2_15
Lytvyn, V.V. (2011). Knowledge Base of Intelligent Decision Support Systems: monograph, Lviv Polytechnic Publishing House, Lviv, 240 p.
Manyika, James et al. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, June, 156 p.
Marr, B. (2015). Big Data: Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance. John Wiley & Sons Ltd, 256 p.
Mayer-Schonberger, V., & Cukier, K. (2013). Big Data: A Revolution That Will Transform How We Live, Work, and Think. John Murray Publishers, UK, ISBN 1848547927 9781848547926.
Mitchell, R.L. (2014). 8 big trends in big data analytics. Computerworld, OCT 23, Retrieved from: http://www.computerworld.com/article/2690856/big-data/8-big-trends-in-big-data-analytics.html.
Paklin, N.B., & Oreshkov, V.I. (2013). Business Intelligence: from data to knowledge. Piter, St. Petersburg, 702 p.
Paklin, N.B., & Oreshkov, V.I., (2009). Business analysis: from data to knowledge. St. Petersburg, 624 p.
Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., & Stonebraker, M. (2009). A Comparison of Approaches to Large-Scale Data Analysis. Proceedings of the 35th SIGMOD International Conference on Management of Data, Providence, Rhode Island, USA, Retrieved from: http://citforum.ru/database/articles/mr_vs_dbms/2.shtml.
Pleskach, V.L., & Zatonatskaya, T.G. (2011). Information systems and technologies at enterprises. Znannya, Kiev, 718 p.
Roem, D. (2014). The practice of visual thinking. An original method for solving complex problems. Mann, Ivanov and Ferber, Moscow, 396 p.
Ronen, S., Gonçalves, B., Hu, K.Z., Vespignani, A., Pinker, S., & Hidalgo, C.A. (2014). Links that speak: The global language network and its association with global fame. PNAS, Vol. 111, No.52, Retrieved from: http://stevenpinker.com/files/pinker/files/pnas_hildago_et_al_global_ language_network_2014.pdf.
SAS. (2017). History and evolution of big data analytics. Retrieved from: https://www.sas.com/en_us/insights/analytics/big-data-analytics.html.
Serov, D. (2012). Analytics of "big data" - new perspectives. Storage News, №1 (49), Retrieved from: http://www.storagenews.ru/49/EMC_BigData _49.pdf.
Shakhovska, N., Veres, O., & Bolubash, Y. (2015). Big Data Information Technology and Data Space Architecture. Sensors & Transducers, Vol. 195, No. 12, p. 69-76.
Shakhovska, N., Veres, O., & Hirnyak, M. (2016). Generalized formal model of Big Data, ECONTECHMOD, Vol. 5, No. 2, p. 33–38.
Shakhovska, N., Veres, O., Bolubash, Y., & Bychkovska-Lipinska, L. (2015). Data space architecture for Big Data managering. Computer Sciences and Information Technologies, Lviv, p. 184-187.
Shakhovska, N.B., Bolubash, Y.J., & Veres, O.M. (2015). Big data federated repository model. CAD Systems in Microelectronics, Lviv, p. 382-384, DOI: 10.1109/CADSM.2015.7230882.
Shakhovska, N.B., Bolubash, Yu.Ja., & Veres, O.M. (2014). Big Data organizing in a distributed environment. Computer Science and Automation, Vol. 2(27), p. 147-155.
Sitnik, V.F., & Krasnyuk, M.T. (2007). Data Mining. KNEU, Kiev, 376 p.
Statsoft. (2017). Text Mining. Retrieved from: http://statsoft.ru/home/textbook/modules/sttextmin.html#index.
Stonebraker, M., Abadi, D., Dawitt, D.J., Madden, S., Paulson, E., Pavlo, A., & Rasin, A. (2010). MapReduce and Parallel DBMSs: Friends or Foes? Communications of the ACM, vol. 53, no. 1, Retrieved from: http://citforum.ru/database/articles/mr_vs_dbms-2/.
Tadviser (2017). Big Data. Retrieved from: http://tadviser.ru/a/125096.
Tafti, E. (2014). Presentation of Information. Retrieved from: http://envisioninginformation.daiquiri.ru/15.
Tukey, J. (1981). Analysis of Observation Results: Exploratory Analysis. Мir, Moscow, 693 p.
Vanyashin, A., Klimentov, A., & Korenkov, V. (2013). PANDA follows the large data. Supercomputers, 3 (11), p. 56-61.
Veres, O. (2015). Ontology Data Cleansing. Bulletin of the National University of Lviv Polytechnic. Series: Information systems and networks, № 814, 237-245 pp.
Veres, O., & Shakhovska, N. (2015). Elements of the formal model big date. International Conference on Perspective Technologies and Methods in MEMS Design, Lviv, p. 81-83.
Vysotska, V., & Chyrun L. (2013). Web Content Processing Method for Electronic Business Systems. International Journal of Computers & Technology, 12(2), p. 3211-3220.
Vysotska, V., & Chyrun L. (2014). Life Cycle Model of Commercial Content Processing in Electronic Commerce System. Computational Problems in Electrical Engineering. Founder and Publisher Lviv Polytechnic National University, 3(2), p. 118-122.
Vysotska, V., & Chyrun L. (2014). Set-theoretic models and unified methods of information resources processing in e-business systems. Applied Computer Science journal, 10(3), pp. 5-22.
Vysotska, V., Chyrun L., Lytvyn, V., & Dosyn, D. (2016). Methods based on ontologies for information resources processing : Monograph. LAP Lambert Academic Publishing. Saarbrucken, Germany.
Vysotska, V., Rishnyak, I., & Chyrun L. (2007). Analysis and evaluation of risks in electronic commerce. CAD Systems in Microelectronics, CADSM ’07, 9th International Conference. p. 332-333.
Weinstein, M., Meirer, F., Hume, A., Sciau, Ph., Shaked, G., Hofstetter, R., Persi, E., Mehta, A., & Horn, D. (2014). Analyzing Big Data with Dynamic Quantum Clustering. arXiv:1310.2700. Retrieved from: https://arxiv.org/ftp/arxiv/papers/1310/1310.2700.pdf.
Witten, I.H., Frank, E., &Hall, M.A. (2011). Data Mining: Practical Machine Learning Tools and Techniques. 3rd Edition, Morgan Kaufmann, 664 p.
Yau, N. (2013). The art of visualization in business. How to present complex information with simple images, Mann, Ivanov and Ferber, Moscow, 352 p.
Refbacks
- There are currently no refbacks.

